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ABSTRACT
Clustering is commonly used for analyzing gene expres-
sion data. Despite their successes, clustering methods
suffer from a number of limitations. First, these methods
reveal similarities that exist over all of the measurements,
while obscuring relationships that exist over only a subset
of the data. Second, clustering methods cannot readily
incorporate additional types of information, such as clinical
data or known attributes of genes. To circumvent these
shortcomings, we propose the use of a single coherent
probabilistic model, that encompasses much of the rich
structure in the genomic expression data, while incor-
porating additional information such as experiment type,
putative binding sites, or functional information. We show
how this model can be learned from the data, allowing
us to discover patterns in the data and dependencies
between the gene expression patterns and additional
attributes. The learned model reveals context-specific
relationships, that exist only over a subset of the ex-
periments in the dataset. We demonstrate the power of
our approach on synthetic data and on two real-world
gene expression data sets for yeast. For example, we
demonstrate a novel functionality that falls naturally out
of our framework: predicting the “cluster” of the array
resulting from a gene mutation based only on the gene’s
expression pattern in the context of other mutations.
Contact: eran@cs.stanford.edu

INTRODUCTION
A central goal of molecular biology is to understand the
regulatory mechanisms that govern protein activity. One
of the main mechanisms of regulation controls the rate of
mRNA transcription of different genes. DNA microarrays
provide a tool for measuring the abundance of thousands
of mRNA transcripts simultaneously. This technology
facilitates the characterization of every gene’s expression
in response to many different types of experimental
conditions, generating enormous amounts of complex
data, e.g., (Spellman et al., 1998; Gasch et al., 2000). A

key challenge is the development of methodologies that
are both statistically sound and computationally tractable
for inferring biological insights from these large datasets.

The most commonly used computational method for
analyzing genomic expression data is clustering, a process
which identifies clusters of genes and/or array experiments
that share similar expression patterns (e.g., (Alon et al.,
1999; Ben-Dor et al., 1999; Eisen et al., 1998)). Genes that
are similarly expressed are often coregulated and involved
in the same cellular processes. Therefore, clustering
suggests functional relationships between clustered genes,
and helps in identifying promoter sequence elements
that are shared among them (Spellman et al., 1998).
Clusters of experiments can imply relationships between
those experimental conditions, implying similarities in the
cellular responses triggered by those conditions (Hughes
et al., 2000).

Despite their successes, clustering methods suffer from
a number of limitations. First, these methods reveal
similarities that exist over all of the measurements, while
obscuring relationships that exist over only a subset of
the data. Second, although clustering identifies genes that
are similar in expression, they cannot readily incorporate
additional types of information, such as clinical data or
experimental details. (See (Barash and Friedman, 2001;
Holmes and Bruno, 2000) for some initial work on this
topic.) In this paper, we propose the use of a single
coherent probabilistic model, that encompasses much
of the rich structure in the genomic expression data,
while incorporating additional information to aid in the
predictions. We show how this model can be learned
from the data, allowing us to discover patterns in the data
and to elucidate the interdependencies between the gene
expression patterns and additional attributes.

Our approach is based on the language of probabilistic
relational models (PRMs) (Koller and Pfeffer, 1998;
Friedman et al., 1999) that extend Bayesian networks to a
relational setting, where we have multiple interdependent
objects (such as genes and arrays). PRMs overcome many
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of the limitations of clustering methods. They allow us to
include multiple types of information to identify similar
objects. For example, identifying similarities between
array experiments can be based on gene expression
patterns, experimental or clinical data, the cell type or
strain used in the experiment, the cellular phenotype
triggered by each condition, and more. When identifying
gene relationships, our approach can use gene expression
data, sequence elements present in the gene promoters,
functional information, and more. By incorporating all the
available information into the analysis, more refined gene
and experiment classifications can be achieved.

A second advantage to our method is that it presents
context-specific relationships between the objects. Many
gene relationships exist only over a subset of the experi-
ments in the dataset, while similarities in the array exper-
iments may be different over different subsets of genes.
We describe learning procedures (related to that of (Barash
and Friedman, 2001)) that are able to determine which at-
tributes are informative in which context. Our procedure
identifies groupings of measurements that correspond to a
subset of both genes and experiments. Thus, unlike stan-
dard clustering methods, our approach does not produce
indivisible clusters, where all of the objects in a cluster are
assumed to behave the same in all contexts.

To validate our method, we present two case studies
for the use of PRMs. In the first, we analyze the Yeast
Stress data of Gasch et al. (2000), which characterizes
the expression patterns of yeast genes under different
experimental conditions. Our model identifies groupings
based on similarities in gene expression, the presence of
known transcription factor (TF) binding sites within the
gene promoters, and functional annotation of genes. Our
approach identifies expected gene clusters, that display
similar gene expression patterns and are known to function
in the same metabolic processes. Even more interesting is
the discovery of new groupings of genes based both on
expression level and on possible TF binding sites.

In the second case study, we use the Yeast Compendium
data of Hughes et al. (2000), which observed the genomic
expression programs triggered by specific gene mutations.
The goal of these experiments is to assign hypothetical
functions to uncharacterized genes, by comparing the
genomic expression program triggered by their deletion
to known expression programs. This data allows us to
exhibit a very different capability of our approach. We
learn a model based on the genomic expression programs
triggered by different gene mutations. We then use our
model to predict the cluster that would be assigned to a
mutation for which we do not have the array data. This task
is a novel one, that falls naturally within our framework
but not within that of other approaches.

PROBABILISTIC MODELS OF GENE
EXPRESSION DATA
Consider a set of measurements for a set Gene of genes
across a set Array of microarrays, reporting the mea-
sured expression (or its logarithm) mg,a for each gene
g ∈ Gene and array a ∈ Array. Regularities in the
expression data often correspond to important biological
phenomena. Clustering methods are one approach for
discovering such regularities, providing biological insight
by identifying groups of genes and/or arrays that are
similar in some sense. A two-sided clustering (Lazzeroni
and Owen, 1999; Hofmann et al., 1999) partitions the
set Gene to gene clusters G1, . . . , Gk , and the set Array
to array clusters A1, . . . , Al . This clustering “models”
the data by assuming that all genes in the same cluster
behave similarly, and that all arrays in the same cluster
behave similarly. More precisely, the model asserts that,
for gene g ∈ Gi and array a ∈ A j , the expression
level mg,a is governed by a distribution specific to the
combination of cluster Gi and cluster A j . For example,
this distribution might be a Gaussian with mean µi, j

and variance σ 2
i, j . This type of clustering provides a very

compact summarization of the data in terms of a k × l
matrix of groupings, where each grouping contains the
measurements corresponding to a cluster of genes and
a cluster of arrays. The model explains differences of
expression between groupings, and treats differences be-
tween the measurements in the same grouping as “noise.”
A good clustering — one which is predictive — would be
one in which the variances σ 2

i, j are small, implying that
most of the differences between expression measurements
are explained by the model, and not attributed to noise.

Two-sided clustering is a promising model. However,
it is very limited in its ability to take advantage of
additional available information. For genes, we might
have annotations such as functional role, cellular location
or the TF binding sites in a gene’s promoter region.
For arrays, we might have the treatment applied to the
sample, the growth conditions, the strain of yeast used,
etc. In the Compendium data set (Hughes et al., 2000),
each array corresponds to an experiment with a mutated
yeast strain, where one or more genes were knocked out;
here, the attributes of the knocked out gene can provide
information about the array. These attributes might be
very informative about the expression level, and we want
to allow models where the expression level depends on
their values. However, we do not simply want to define
a separate distribution for each combination of gene and
array attributes: the number of resulting distributions
would be enormous, and we would not have enough data
to estimate their parameters. Rather, we want to consider
models where only some attributes have a direct influence
on the expression levels. Moreover, we want to discover
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which are the significant attributes by learning a predictive
model from the data.

Probabilistic Relational Models. Probabilistic rela-
tional models (PRMs) (Koller and Pfeffer, 1998; Friedman
et al., 1999) provide a formal framework for representing
the type of dependencies we described above. A PRM
provides a probabilistic model over a relational schema.
A schema specifies the classes of objects that appear
in our data, and the attributes of each class. In gene
expression data, we typically have three classes: Gene,
Array, and Exp, which corresponds to the measurement
of the expression of a specific gene in a particular array.
Each class X is associated with a set of attributes A(X).
Attribute A of class X is denoted X.A. For example,
if we have an annotation of genes according to several
functional categories, the class Gene might have several
binary attributes such as AAM, representing “Amino
Acid Metabolism”. The Exp class has the attribute Level
that denotes the measured expression level. In clustering
models, we also introduce latent (hidden) variables that
represent the division into clusters. Thus, when modeling
two-sided clustering, the class Gene would also have
the attribute GCluster, that denotes the cluster the gene
belongs to; if we have k gene clusters, the attribute
GCluster would take on the values 1, . . . , k. The class
Array has a corresponding attribute ACluster.

The schema describes the type of objects we might
encounter; the set of actual objects varies from one
situation to another. For example, in one case we might
have a particular set of 4, 000 genes, 100 arrays, and
400, 000 measurements, in another case, we might have
16, 000 genes, 20 arrays, and 30, 000 measurements
(some arrays were partial). In any such particular case, we
need to specify the set of objects we deal with. A skeleton
σ specifies the set of objects. In our example, the skeleton
specifies the set of genes Oσ (Gene), the set of arrays
Oσ (Array), and the set of measurementsOσ (Exps).

Note that the objects in our domain are related to
each other. A particular measurement (e.g., M1237) would
correspond to a particular gene that was measured (e.g.,
G12) and to a particular array (e.g., A37) in which the
measurement was performed. We use reference slots to
refer to related objects. Thus, M1237.Of-Gene refers to
G12 and M1237.In-Array refers to A37. A skeleton has to
specify the values of these references for each object. In
our example, the skeleton specifies the value of the slots
m.Of-Gene and m.In-Array (i.e., which gene is measured
and in which array).

The values of the attributes of the objects are not
specified in the skeleton. We treat these unknown values as
random variables. Formally, a skeleton σ defines a set of
(random) variables: one variable x .A for each object x and
each attribute A in the object’s class. For example, if G12

is an object inOσ (Gene), then we have a random variable
G12.GCluster that denotes the cluster of the gene G12. We
want to specify a single joint distribution over the values of
all of these variables. However, we want this description to
apply to any skeleton we might observe. Thus, we specify
a “template” probabilistic model over classes of objects,
which can then be instantiated for all of the objects in
the class. A PRM � consists of a qualitative dependency
structure, S , and the parameters associated with it, θS .
The dependency structure is defined by associating with
each attribute X.A a set of parents Pa(X.A). The parents
of X.A specify the attributes that influence it directly,
i.e., the attributes whose values determine the distribution
from which it is sampled. Each parent has the form of
either X.B or X.R.B where R is a reference to a related
object. For example, in a simple two-sided clustering
model, the attribute Exp.Level might have the parents
Exp.Of-Gene.GCluster and Exp.In-Array.ACluster. This
model indicates that the distribution from which the value
of m.Level is selected is different for different values
of g.GCluster and a.ACluster where g and a are the
particular gene and array that are related to the particular
measurement m.

The parameters of the PRM specify the parameters of
each of these distributions. Thus, for each attribute X.A,
the parameters describe a conditional probability distribu-
tion (CPD), which specifies the probability of X.A, given
any possible instantiation of values to its parents. In our
simple model above, we would have a distribution over
Exp.Level for each of the k × l assignments of values to
Exp.Of-Gene.GCluster and Exp.In-Array.ACluster. As we
discuss below, we have freedom to determine the form of
this parameterization.

For any skeleton, a PRM induces a Bayesian network
over all of the variables defined by a skeleton. The
parents of each variable in the network are specified
by the PRM dependency structure S and the skele-
ton. Each variable is associated with a conditional
probability distribution, which is copied from the class-
level CPD. Continuing our example, the parents of
M1237.Level would be G12.GCluster and A37.ACluster,
and its CPD would be a copy of P(Exp.Level |
Exp.Of-Gene.GCluster, Exp.In-Array.ACluster). The
semantics of this network is defined as usual. Letting
Y1, . . . , YN be the set of variables, the joint distribution is
defined as P(Y1, . . . , YN ) = ∏N

i=1 P(Yi | Pa(Yi )).

Context-Specific Models. The language of PRMs
allows us to introduce gene and array attributes into
the model, thereby allowing us to extend substantially
the simple two-sided clustering model discussed above.
More specifically, we can model the dependency of
Exp.Level on the gene and array attributes. At the level
of the PRM structure, we can model a dependence of
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Fig. 1. (a) PRM model for Compendium data set; (b) Part of the tree CPD in the model.

the expression level on whether the associated gene
has the function Amino Acid Metabolism, by adding
Exp.Of-Gene.AAM as a parent of Exp.Level. In general,
we would expect the Exp.Level to depend on several
of these attributes, e.g., biochemical functions, cellular
locations, etc. If we have n of these attributes A1, . . . , An ,
and each of them can influence the expression level,
the resulting model will require that we specify a
CPD P(Exp.Level | Exp.Of-Gene.GCluster, Exp.In-
Array.ACluster, Exp.Of-Gene.A1, . . ., Exp.Of-Gene.An).
A naive representation of this CPD requires that we
specify 2n · k · l distributions, which is clearly unrealistic
even for small values of n. Beyond the computational
consequences of this explosion, this naive representation
also hides important patterns that might be present in the
data. For example, consider again the AAM function.
We might expect that genes of this function will behave
differently in arrays where this metabolism is very active
(e.g., during rapid growth), or depressed (e.g., during cell
arrest). In other conditions, this distinction is irrelevant.
Thus, although we consider the functional category
Exp.Of-Gene.AAM as informative about the expression
values, it is relevant only when Exp.In-Array.ACluster
has specific values. In other words, we want the distri-
bution over Exp.Level to be different for the different
values of Exp.Of-Gene.AAM only for certain values of
Exp.In-Array.ACluster.

A natural representation of this type of interaction is us-
ing tree-structured CPDs, similar to decision trees (Fried-
man and Goldszmidt, 1998). Formally, A CPD-tree repre-
sentation of a CPD for an attribute X.A is a rooted tree;
each node in the tree is either a leaf or an interior node.
Each interior node is labeled with a test of the form Y.B =
v, where Y.B is a parent of X.A and v is one of its values.
Each of these nodes has two outgoing arcs to its children,
corresponding to the outcomes of the test (true or false).

For example, we might represent the CPD of Exp.Level
using the tree shown in Figure 1(b).

Each leaf node corresponds to a unique path from
the root. The nodes on the path correspond to tests, and
the arcs to their outcomes. This sequence thus defines
the event induced by the leaf — the conjunction (i.e.,
intersection) of the events defined by the arcs in the
sequence. For example. the left-most leaf of Figure 1(b)
corresponds to the event “m.Of-Gene.GCluster = 0 and
m.Of-Array.Mutant.GCluster �= 3 and m.Of-Gene.HSF <

2”. We denote by Leaves(X.A) the set of leaves in the
CPD-tree for X.A. If 
 is the index of a leaf, we use
the notation L X.A = 
 as a shorthand for the event that
correspond to the leaf 
. Each leaf is labeled with a
distribution over the values of X.A, representing part of
its CPD — the distribution P(X.A | L X.A = 
).

Each leaf in the CPD-tree of Exp.Level corresponds to a
grouping of expression measurements that are considered
to be sampled from the same distribution. Note that
each such grouping is a “rectangle” in the expression
matrix: a cross-product of a set of genes and a set of
arrays. However, unlike the groupings defined in two-
sided clustering, these groupings do not typically define
a uniform grid over the expression matrix.

LEARNING THE MODELS
Our goal is to learn a PRM model from data. The input to
the learning algorithm is a skeleton σ , and a (potentially
partial) assignment of values to the random variables it
defines. In our example, the data set will consist of: a set
of expression level measurements, corresponding to some
set of genes and some set of arrays, and typically a set of
attributes for the genes and for the arrays. Note that the
cluster variables for genes and arrays are not part of the
data. The learning task can be decomposed into two parts:
parameter estimation — estimating the parameters for a
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model whose structure is given, and model selection —
choosing among the set of possible structures.

Parameter Estimation. Consider the task of estimating
parameters for a model where we have fixed the depen-
dency structure S that specifies the parents of each at-
tribute, and the tree structure for each CPD. Our goal is to
estimate the model parameters θS : the distribution at each
leaf. Most simply, we can estimate parameters by using
maximum likelihood estimate. We define the likelihood of
a particular set of parameters θS as the probability of the
training data I given the model (S, θS). This probability
is defined according to the PRM semantics, as the proba-
bility of the attribute values in I in the Bayesian network
defined by its skeleton. The maximum likelihood parame-
ters are the θS that maximize the likelihood.†

When the values of all attributes are fully observed,
the maximum likelihood parameter estimation reduces
a maximum likelihood estimation of each the separate
P(X.A | L X.A = 
) at the leaves of the different CPD-
trees. The nature of this estimation task depends on the
type of attribute. If the attribute is discrete valued, we
estimate a multinomial distribution. If it is a continuous
valued attribute, we estimate a Gaussian distribution.
Both estimation tasks are standard and rely on sufficient
statistics that summarize the data. For example, in the
case of multinomial distributions, these are just the counts
CX.A[v, 
], specifying the number of objects x ∈ OI(X)

for which we observe the combination x .A = v and
Lx .A = 
. In the case of Gaussian distributions, these
sufficient statistics are the mean and variance of the
objects in which the leaf l is relevant.

Structure Learning. We now consider the task of
selecting among the many possible models, where each
of the possible models specifies the set of parents for
each attribute, and the structure of the CPD-trees. There
are two issues that need to be addressed in this setting:
the scoring function, used to evaluate the “goodness” of
different candidate structures relative to the data, and the
search algorithm for finding a structure with a high score.
We discuss each of these in turn.

We follow Friedman et al. (1999) and use Bayesian
model selection methods to score candidate structures.
The Bayesian score of a structure S is defined as the
posterior probability of the structure given the data I —
P(S | I, σ ). Using Bayes rule, and making a standard
assumption that the different structures are equally likely
a priori, the score reduces to P(I | S, σ ). This term
evaluates the fit of the model to the data by averaging the
likelihood of the data over all possible parameterizations
of the model. This averaging regularizes the score and

† In practice, the maximum likelihood can be noisy in leaves that correspond
to rare events. To reduce parameter variance, we use a Bayesian method to
smooth the estimate.

avoids overfitting the data with complex models. When
the training data is fully observed, the Bayesian score has
a simple analytic form (Friedman et al., 1999; Friedman
and Goldszmidt, 1998; Heckerman, 1998), as a function
of the sufficient statistics of that model.

Having defined a metric for evaluating different models,
we need to search the space of possible models for one
that has high score. As is standard in both Bayesian
network and PRM learning (Heckerman, 1998; Friedman
et al., 1999), we use a greedy local search procedure that
maintains a “current” candidate structure and iteratively
modifies it to increase the score. At each iteration, we
consider a set of simple local transformations to the
current structure, score all of them, and pick the one with
highest score. Our operators, following Chickering et al.
(1997), consider only transformations to the CPD-trees.
The tree structure induces the dependency structure, as
the parents of X.A are simply those attributes that appear
in its CPD-tree. The two operators we use are: split —
replaces a leaf in a CPT tree by an internal node with
two leafs; and trim — replaces the subtree at an internal
node by a single leaf. To avoid local maxima associated
with the greedy search procedure, we use a variant of
simulated annealing: Rather than always taking the highest
scoring move in each search step, we take a random step
with some probability, which decays exponentially as the
search progresses.

Incomplete Data. So far, we have assumed that the
training data I specifies the values of all the attributes.
In many situations, this assumption is not warranted;
in particular, it is clearly false when we are learning
models with latent variables, such as Gene.GCluster, that
are never observed in the training data. Learning from
partially observed data is substantially more difficult than
the fully observable case: the likelihood function has
multiple local maxima, and no general method exists for
finding the global maximum.

The Expectation Maximization (EM) algorithm is an
approach for parameter estimation with incomplete data.
It is guaranteed to find a local maximum of the likelihood
function. The EM algorithm is an iterative method.
Starting from an initial guess for the parameters, it
repeatedly performs two steps. In the E-step, it computes
the distribution over the unobserved variables given the
observed data and the current estimate of the parameters. It
uses this distribution to “fill in” each missing attribute x .a
with a soft completion that takes into consideration how
likely its different values are. In clustering models, this
completion corresponds to a soft assignment of objects to
clusters. In the M-step, it uses this completion as if it were
real, and reestimates the parameters using the standard
maximum likelihood estimation procedure. The process
then repeats, using the new parameters, until convergence.
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Table 1. Reconstruction results for synthetic data.

% parents Cluster recovery
recovered Naive Bayes PRMs

Simulated Data 84.5 ± 2.5 90.8 ± 0.42 98.4 ± 1.07
Noisy Simulated Data 56 ± 2.5 76.7 ± 1.42 88.1 ± 1.52

To fill in the missing data in the E-step, we need to run
inference over the entire Bayesian network induced by the
PRM over the objects in σ . In many cases, these networks
are complex, and exact inference is intractable. Instead,
we use belief propagation (Murphy and Weiss, 1999), an
approximate inference algorithm which has recently been
shown to be effective on a wide range of models.

For learning structure with incomplete data, we use
a hard-assignment variant of structural EM (Friedman,
1998). We fill in missing attributes with their most
probable value, given the current model, and then run
structure learning on the completed data. When structure
learning converges, we remove the hypothesized values
for the unobserved attributes, run EM to fit the parameters
of the learned structure, and then select a new hard
assignment for the missing attributes. This process is
iterated until convergence.

CASE STUDIES
We evaluated our methods on three gene expression data
sets, one synthetic and two real. The results on synthetic
data demonstrate that our approach recovers structure that
we know to be present in the data. The models for the real
data sets illustrate the wide applicability of our approach.

Synthetic data. We generated a synthetic data set by
sampling from a PRM model. To make the data realistic,
we used PRM models learned from the Stress data set.
These models are similar to the two-sided clustering
models described above. The main difference is that we
take Array.ACluster to be the observed experiment type (1
of 12). The Gene.GCluster attribute is hidden, and takes 9
values. We generated data for 1000 (imaginary) genes and
90 arrays, for a total of 90,000 measurements. Each gene
was augmented with 15 function annotations and 30 TFs.

We evaluated the ability of our learning algorithm to
recover the model using two metrics. To robustly estimate
these, each was evaluated using 10-fold cross validation,
training on 90% of the data and (where applicable)
testing on the remaining 10%. The results are shown
in Table 1. We first measured the extent to which the
structure learned is similar to the “true” structure in the
data. More specifically, we saw how many of the parents of
Exp.Level are recovered in the learned model. Our results
indicate that our algorithm recovers the “true” structure

with very high accuracy. In a second test, we measured the
extent to which we can recover the original gene clusters
g.GCluster, which were hidden in the data. We learned
the model on the training data, and then tried to predict
the (nine-valued) cluster attribute in the test data. Our
reconstruction ability for the clusters is extremely high,
and much higher than we could obtain by a standard
clustering algorithm using a Naive Bayes model over gene
expression alone.

To test the robustness of our methods, we also generated
a noisy version of the same data set: within each category
of data — function annotations, TFs, and expression
levels — 20% of the entries were permuted among
themselves. We can see that our ability to reconstruct the
structure is lower, but still quite good given the number
of possible parents. Our ability to reconstruct the clusters
is still impressively high, whereas the simple naive Bayes
clustering degraded more substantially. Thus our method
is robust even to a large amount of noise in the data.

Yeast Stress data. We now consider the data set of Gasch
et al. (2000), who characterized the genomic expression
patterns of yeast genes in 12 different experimental
conditions. We selected 954 genes that had significant
changes in gene expression (eliminating the ESR genes
for which clustering is trivial), and the full set of 92
arrays. We supplemented the raw gene expression data
with additional attributes from two other yeast databases.
For every gene, we selected 22 functional classes from
the MIPS database (Mewes et al., 1999), and used them
as binary attributes of genes. In addition, we introduced
attributes representing the presence of binding sites for
known TFs. We introduced one attribute for each of 44
TFs, and generated its value for each gene — 0, 1, or ≥ 2
— by scanning the 1000bp upstream of the gene’s ORF
using the MatInspector program (Quandt et al., 1995) and
counting the number of putative sites for the TF.

We used the model discussed above, with the classes
Gene, Array, and Exp. The Gene class included a latent
cluster variable, as well as the 66 attributes described
above. The Array class included an attribute Type with 12
values, representing the “type” of experiment performed.
We used this attribute as an observed substitute for the
ACluster attribute.

Our algorithm learned many dependencies between the
expression measurements, the type of the experiment, the
latent cluster variable, the function attributes, and the TFs.
Before analyzing the model, the first question of interest
is whether the structure learned is indeed present in the
data or perhaps our algorithms would learn dependencies
even when no structure is present. To test that, we took
the real data set and permuted all of it: annotations with
annotations, TFs with TFs, and expression levels with
expression levels (even across experiment types). We then
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(a) (b)
Fig. 2. (a) Summary of representative gene groupings in the Stress data. Each grouping corresponds to a cluster of genes in the context
of a particular experiment. The right panel shows the average expression profile of the genes in the grouping in the context of all of the
experiments; the experiment type is indicated by the colored triangles at the top of the figure. The particular experiment type in which the
grouping arises is shown on the left. The left panel shows the functional attributes associated with each of the displayed groupings. Each
box indicates the percentage of each grouping that displayed that attribute. (See http://cs.stanford.edu/∼erans/ismb01/ for additional cluster
data.) (b) The expression of genes in Grouping 666 in response to stationary phase. All genes in this cluster contained two or more potential
Mig1p binding sites within their promoters.

tested three models: model 1 — a PRM trained on the
original data set; model 2 — a PRM trained on the noisy
data; model 3 — a PRM with no dependencies trained on
the noisy data. We then evaluated the ability of the model
to generalize from the training data by evaluating the
log-likelihood of test data. Over 10-fold cross validation,
we obtained substantial differences between the models:
−11729 ± 272 for model 1, −14680 ± 721 for model
2, and −14923 ± 160 for model 3, indicating that our
model indeed explains the data significantly better. We
also examined the extent to which the dependencies added
in the learning algorithm are informative, in that they
cause a substantial improvement to the Bayesian score.
Indeed, the learning algorithm discovered 7 annotation
and 15 TF parents whose score in the model learned from
real data was around twice as high as the best score of
the dependencies learned from the perturbed data. As our
models are much better at explaining the data, this strongly
indicates that these parents correspond to dependencies
that are indeed implied by the data.

Our second experiment tests whether our learning algo-
rithm results in coherent clusters. To test that, we com-
puted a weighted average of the variances in each of the
groupings. Over the three structure-modification iterations
of our algorithm, the average grouping variance decreased
substantially, from 0.692 in the initial model to 0.614 in
the final model. We also experimented with a novel ap-
proach to incorporating the functional annotations recov-
ered from yeast databases: to avoid restricting the aggrega-
tion based on previous interpretation of experimental data,
we use the functional annotations as a guide in the initial
training of the model; we then remove the observed values

of these annotations and retrain the model based only on
the gene expression and TF binding site data. This process
allows unannotated genes to be aggregated with charac-
terized genes, so that we can infer hypothetical functions
for those uncharacterized genes. Overall, around 20% of
the functional annotations were changed in this process,
mostly going from cases where the function was labeled
as absent to cases where it was labeled as present. This
change is quite reasonable, as the MIPS database does not
distinguish between “unknown” and “known to be false”.
These changes also led to a substantial improvement in the
average grouping variance: from 0.692 to 0.565. Although
it is not clear whether the new annotations correspond to
the original meaning of the functions, it appears that they
do represent a biologically predictive property.

Figure 2(a) shows a summary diagram of a representa-
tive set of groupings constructed by our model. For exam-
ple, Grouping 652 consists of 73 genes that are similarly
induced during the diauxic shift. A significant percentage
of genes in this grouping are annotated as functioning in
respiration or transport and localizing to the mitochondria,
cytoplasm, and endoplasmic reticulum (ER). Inspection of
the genes in this grouping confirms that many of these
genes are involved in the TCA metabolic cycle, oxidative
phosphorylation, and ATP synthesis (respiration), trans-
port of sugars and amino acids, and other related func-
tions. Thus, the attributes associated with this grouping
paint a picture of the physiological response during sta-
tionary phase: when the glucose in the cells medium be-
comes limiting, transporters are secreted through the ER
to the plasma membrane, where they import sugars and
amino acids to supply the TCA cycle, which promotes res-
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Fig. 3. Predicting the array (mutation) cluster without observing its
expression data in the Compendium data.

piration in the mitochondria. The algorithm also assigns
15 uncharacterized genes to this grouping, suggesting that
these genes are likely to play a similar role in the cell.

The algorithm also identified groupings of genes that
were related by the presence of known transcription fac-
tor binding sites in the their promoters. Most interesting
is Grouping 666 identified in iteration 1, shown in Fig-
ure 2(b). This grouping is over a set of 17 genes involved
in sugar metabolism that each contain two or more bind-
ing sites for the Mig1 repressor. Mig1p represses genes in-
volved in alternative sugar metabolism when external glu-
cose levels are high, but the repressor becomes deactivated
when glucose becomes limiting during the diauxic shift,
leading to the increased expression of its targets. All of
the genes in the grouping are substantially induced at the
diauxic shift. Included in this grouping is the SUC2 gene,
a well known target of Mig1p, as well as genes involved in
glucose and maltose metabolism (e.g., MAL31), cell wall
proteins (e.g., ECM13), and a number of genes involved in
other aspects of carbon metabolism. These proteins were
not previously known to be regulated by Mig1p, however
the presence of the Mig1p binding site in their promot-
ers, along with the similarities in their biochemical func-
tions and gene expression patterns, suggests that they are
also regulated by Mig1p derepression. We note that the
context-sensitive nature of our groupings played an impor-
tant role in identifying this cluster. Many of the genes in
this grouping were also present in the much larger Group-
ing 652, which represented genes that were related in gene
expression and functional annotation but not necessarily
sharing the Mig1p promoter element. A traditional clus-
tering algorithm that does not allow genes to participate in
multiple groupings may not have been able to isolate these
two clusters, and would not have revealed this new cluster
of Mig1p-regulated genes.

Yeast Compendium Data. The Compendium data
set (Hughes et al., 2000) is very different in nature than
the Stress data. The goal of the experiments was to
assign hypothetical functions to uncharacterized genes, by
comparing the expression pattern triggered by deletion of
these characterized genes. We selected 528 genes and 207
arrays, focusing on genes and mutations that had some
functional annotations in the MIPS database.

Here we can exploit much more of the expressive power
of PRMs. In this model, the Gene class has the same set
of attributes as in the Stress data set above. The Array
class has an attribute ACluster, representing a cluster of
the array (mutation). Most interestingly, we introduced a
reference slot — Array.Mutation (indicated in Figure 1(a)
by the thick dashed line connecting the gene object to the
array object) — which refers to the object for the mutated
gene used to generate the array.

The explicit relationship between the array object and
the associated mutated gene, and the dependencies that it
permits, allow us to perform a task which is outside the
scope of other approaches: predicting the array (mutation)
cluster of an array without performing the experiment!
The basic insight is that mutations that cluster together
tend to induce similar effects on the genomic expression
pattern when they are mutated because they are involved
in similar functional processes. This insight suggests the
following type of inference: For a given gene, we can
infer the gene cluster to which it belongs, and then
predict which mutation cluster if would fall into if it
were to be mutated, based on the observed correlations
between the gene clusters and mutations clusters. We
tried out this hypothesis by hiding 20 of the mutant arrays
in the data, and training the model on the remaining
ones. We then tried to predict the mutation cluster of the
20 hidden arrays, based only on our knowledge about
the gene that was mutated. We compared this to the
cluster we would have placed the array in after seeing
its expression pattern. We repeated this experiment ten
times, for different choices of the 20 held-out arrays. A
graph of the results is displayed in Figure 3. For each
prediction, the algorithm outputs a confidence measure
— the probability that the unobserved array is assigned
to the most probable cluster. For each such confidence
level, we graph the percent of the arrays at that confidence
level (or higher), and the accuracy of the prediction if
we consider only those arrays at this confidence level.
We can see that approximately 22% of the arrays (or 44
arrays) are predicted with 95% accuracy. Thus, there is
a significant number of genes for which we can predict,
with high accuracy, the mutation cluster to which they
belong, without conducting the experiment of mutating
them. This allows us to predict hypothetical functional
information for these genes. Moreover, our approach tells
us which are the arrays for which we can make a high-
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confidence prediction. We note that the relational nature
of our approach is critical to our ability to perform
this prediction; a model where we disallowed the direct
dependency of the array cluster on the corresponding gene
cluster did not exhibit significant predictive power.

DISCUSSION
We have provided a method for analyzing gene expression
data based on probabilistic graphical models. Our models
are very richly structured, allowing us to integrate multiple
types of data. In a sense, they provide a midpoint on the
spectrum between two extremes: fine-grained Bayesian
network models of gene expression pathways (Friedman
et al., 2000; Hartemink et al., 2001; Pe’er et al., 2001), and
the more standard coarse-grained clustering approaches.

Unlike standard clustering, our approach can identify
genes that are similar over multiple types of data, in-
cluding functional attributes and transcription factors,
providing more refined groupings than those derived
from gene expression alone. However, our algorithm is
flexible in its use of functional annotations, allowing the
functional annotations to be modified to better predict
the data. This flexibility allows uncharacterized genes
that lack annotations to be associated with genes of
known function, thereby suggesting details about their
biochemical function and cellular role. Finally, as our
algorithm presents groupings in terms that directly relate
to function attributes, it provides a summary of the
physiological response of the cell, and suggests how
genes of different biochemical function or localization
can act together to serve the same cellular role. Unlike
traditional clustering methods, our approach generates
context-specific groupings, in which genes can be present
in more than one grouping, thereby revealing multiple
gene relationships. As we have seen, this capability can
identify groupings among genes that play multiple roles.

The expressive power of our framework opens the door
to many exciting directions. For example, we can include
potential promoter sequences as objects, and not merely
as fully observed attributes. This will allow us not only
to identify genes that share a given promoter sequence,
but also perhaps to identify new regulatory sequences.
Our approach also allows us to incorporate very rich data
into the model, including phenotypical information (e.g.,
about the clinical attributes of patients), tissue type, and
more. We plan to explore the capabilities of our framework
on richer data sets involving this type of information,
with the goal of automatically correlating phenotype data,
sequence data, and gene expression data.
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